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Introduction
The principal focus of this paper is carrier pricing
decisions for a new type of vehicle routing prob-
lems defined in a competitive and dynamic environ-
ment. This class of problems is best introduced in the
context of the evolution of the freight transportation
industry (deregulation) in the ’80s and the explosive
growth of the information and communication indus-
tries in the ’90s.
The transportation industry became highly com-

petitive in the United States after the U.S. Congress
passed motor carrier deregulation legislation in the
late 1970s and early 1980s. As a result, competition in
the trucking industry is fierce, aided by relatively low
capital entry requirements (especially in the truck-
load (TL) sector), and reflected in the large number of
trucking companies (Coyle, Bardi, and Novac 2000).
Operating ratios as tight as 0.95 (allowing just five
cents per dollar earned to cover fixed costs, interest
cost, and return to owners/taxes) are considered stan-
dard for TL companies (TCA 2003).
Information and communication technologies (ICT)

are reducing pre- and posttransaction costs such as

search, communication, quote request/preparation,
and monetary exchanges. Ubiquitous and reliable
communication networks are allowing physical de-
centralization of decision-making processes while
connecting market agents in real time. As transaction
time, cost, and effort reductions take place, sourcing
and procurement strategies adjust to the new mar-
ket environment (Dai and Kauffman 2002). The side
effect of cheaper and improved market information,
as well as higher transparency, can lead to increased
competition (Zhu 2004). Nandiraju and Regan (2005)
present a review of transportation marketplaces and
their characteristics.
In a competitive transportation market, carriers typ-

ically face two distinct, although interrelated, decision
problems: (1) a cost minimization problem (operat-
ing the fleet in the most efficient manner) and (2) an
incremental cost and price determination problem
(needed for contract tendering). The first type of prob-
lem is best described in the operations research (OR)
literature by the family of problems widely known
as vehicle routing problems (VRP). The second type
of problem, despite its significance in competitive
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markets, has not received as much attention in the
OR and vehicle routing literature, but is gaining trac-
tion in the operations management literature under
the growing subarea of revenue management.
To study carriers’ pricing in a competitive transporta-

tion market, this paper introduces the vehicle routing
problem in a competitive environment (VRPCE) as
an extension of the traveling-salesman problem with
profits (TSPP) to a dynamic competitive auction envi-
ronment. In the VRPCE, the carrier must estimate the
incremental cost of servicing new service requests as
they arrive dynamically. The paper presents a rigor-
ous and precise treatment of the sequential pricing
and costing problem that a carrier faces in such an
environment. The sequential pricing problem is an
intrinsic feature of a sequential auction problem. In
addition to introducing the formulation of this class
of problems and discussing the main sources of diffi-
culty in devising a solution, a simple example is con-
structed to show that carriers’ prices under first-price
auction payment rules do not necessarily reflect the
cost of servicing transportation requests. An approxi-
mate solution approach with a finite look-ahead hori-
zon is presented and illustrated through numerical
experiments, in competition with a static approach
with no look-ahead.
This paper is organized as follows. Section 1

presents a literature review of the relevant VRP liter-
ature. Section 2 describes the VRPCE and introduces
the mathematical notation necessary to describe the
problem. Mathematical properties of pricing inherent
to the VRPCE are shown and discussed in §3. Sec-
tion 4 illustrates the equations and calculation process
for a VRPCE example. Section 5 considers pricing
with alternative payment (reward) mechanisms. Sec-
tion 6 discusses the computational complexity of the
VRPCE, proposes a simplified heuristic procedure,
and analyzes its properties via simulation results.
Section 7 reviews key informational and behavioral
assumptions of the VRPCE, and is followed by con-
cluding comments in a final section.

1. VRP Background Review
This section places the VRPCE in the context of the
main known classes of the VRP and does not pro-
vide a comprehensive review of the extensive litera-
ture related to the VRP.
First introduced by Dantzig and Ramser (1959) in

what they called the truck-dispatching problem, the
VRP was formulated as an offshoot of the traveling-
salesman problem (TSP) to capture multiple vehicles
(with and without capacity constraints) and routes.
Among many other extensions, the time windows
VRP is widely encountered (Solomon and Desrosiers
1988). The objective in that case is to build up

routes that minimize total distance while satisfying
all customers’ time windows. Other extensions in-
clude heterogeneous fleet capacity, compatibility con-
straints between vehicles/cargo/customers, pickup
and delivery problems, several depots, driver-related
constraints (maximum number of driving hours or
mandatory rests), and generalized cost functions
(combination of distance, time driven, and vehicle
type). A thorough and comprehensive review of de-
terministic and static problems can be found in Toth
and Vigo (2002).
Problems where customers (demand) or travel (ser-

vice) times are not deterministic give rise to stochas-
tic versions of the VRP. Jaillet (1988) introduced
the a priori solution approach to the probabilistic
TSP with stochastic customer requests (when the
truck leaves the depot, there is uncertainty regard-
ing what set of customers have to be served), later
generalized to the VRP with stochastic customers
and demand (Gendreau, Laporte, and Seguin 1996;
Bertsimas, Jaillet, and Odoni 1990; Jaillet and Odoni
1988). Stochastic travel times in vehicle routing prob-
lems were introduced in Stewart and Golden (1983)
and analyzed further in Laporte, Louveaux, and
Mercure (1992) under general stochastic program-
ming formulations (e.g., using chance constraints).
Laporte and Louveaux (1993) presented an L-shaped
solution for the stochastic integer program with com-
plete recourse and first-stage binary variables.
Powell, Jaillet, and Odoni (1995) present a discus-

sion of dynamic network modeling problems that
arise in logistics and distribution systems, includ-
ing a priori optimization and online decision policies
for dynamic vehicle routing problems where infor-
mation about customers or the system is revealed
over time. Powell developed early models for the
dynamic VRP (Powell 1986, 1987). Recent contribu-
tions to this problem include: approaches to anticipate
future events using multiple-scenario analysis (Bent
and Van Hentenryck 2004), sampling future scenar-
ios (Mitrovic-Minic, Krishnamurthi, and Laporte 2004;
Hvattum, Lokketangen, and Laporte 2006), vehicle
waiting strategies (Branke et al. 2005; Mitrovic-Minic
and Laporte 2004), anticipation of customer requests
using a Markov process approach (Thomas and White
2004), and using knowledge about future demand
arrivals in a real-time setting (Hemert and La Poutre
2004; Ichoua, Gendreau, and Potvin 2006).
Dynamic fleet management problems where the de-

cision variables are assignment of vehicles (resources)
to shipments (tasks) have also been studied in the lit-
erature, e.g., Powell’s (1996) model for the dynamic
assignment problem. Recent work has focused on
studying the properties of these assignment models as
well reducing the required computational effort, e.g.,
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through approximations to the concave dynamic pro-
gram value function (Topaloglu and Powell 2003). The
effectiveness and computational complexity of the
approximations are problem dependent. For exam-
ple, problems with homogeneous vehicle types and
one-period shipment service times can be efficiently
approximated with a piecewise-linear function that
provides integer solutions (Godfrey and Powell 2002),
whereas problems with heterogeneous vehicle types
and multiperiod service times require more elaborate
approaches (Topaloglu and Powell 2002).
A common objective found throughout the litera-

ture is to minimize transportation costs, generally in
regard to empty distance, driving time, or a combina-
tion of distance and time. Although costing is part of
any dynamic problem (costs are implicitly considered
because current decisions affect the cost of serving
future shipments), costing and pricing are usually not
an explicit part of VRP (deterministic, stochastic, or
dynamic) formulations.
Profits are explicitly considered in the “Traveling-

Salesman Problem with Profits” or TSPP, as stated
by Feillet, Dejax, and Gendreau (2005) in a com-
prehensive survey. These TSPP problems can be
divided into three categories according to Feillet,
Dejax, and Gendreau (2005): (a) profit tour problems
(PTP), (b) orienteering problems (OP), and (c) prize-
collecting TSPs (PCTSP). These problems not only
include a known profit for visiting a customer/city,
but also relax the condition that every customer must
be visited. In the PTP (Dell’Amico, Maffioli, and
Värbrand 1995), the objective is to find a TSP tour that
maximizes total collected profits minus travel costs.
The OP (Golden, Levy, and Vohra 1987) is similar
to the PTP, with a constraint on total travel or cost.
Finally, the PCTSP (Balas 1989) is similar to the PTP,
but with a constraint on the amount of profit that
must be collected in a tour.
Another line of research that explicitly includes

profits and routing problems is the work on sequen-
tial auctions for transportation, where contracts (ship-
ments) dynamically arrive at a marketplace and
carriers compete for them in a sequence of one-
shipment auctions. These sequential auctions enable
the sale of cargo capacity based mainly on price,
yet still satisfy customer level of service demands.
This work belongs to this line of research. Figliozzi,
Mahmassani, and Jaillet (2003a) present a frame-
work to study transportation marketplaces and to
compare the competitiveness of different vehicle rout-
ing strategies. Using this framework, Figliozzi, Mah-
massani, and Jaillet (2004) compare four different
methods to estimate service costs, including a simple
look-ahead heuristic that averages the cost of serv-
ing future requests. Subsequent work in Figliozzi,
Mahmassani, and Jaillet (2005) studies the effect of

bid learning mechanisms and auction settings on
the performance of the transportation marketplace,
highlighting the effect on market performance of the
information known by the carriers at the time of
bidding. More recently, Figliozzi, Mahmassani, and
Jaillet (2006) introduce the concept of opportunity
costs in truckload sequential auctions, propose an
expression to quantify and approximate such oppor-
tunity costs, and discuss initial simulation results.
In his doctoral dissertation, Figliozzi (2004) sug-
gests a game-theoretic equilibrium formulation of
the decision problems faced by the carriers (bid-
ders) and, recognizing the intractability of that for-
mulation, proposes a bounded rationality approach
to study carriers’ behavior and bidding. The present
paper formalizes and further develops the ideas in
Figliozzi’s dissertation and in Figliozzi, Mahmassani,
and Jaillet (2006) to present a precise treatment of
the sequential pricing problem and its related behav-
ioral and informational assumptions. Results related
to the relative magnitude and impact of future profits
in relation to static insertion costs are estimated and
discussed. Finally, note that work related to combi-
natorial auctions (rather than the sequential bid deci-
sions in the present work) in transportation can be
found in Caplice (1996), Sheffi (2004), Song and Regan
(2005), and Wang and Xia (2005).
The VRPCE introduced in this paper generalizes

the TSPP to a dynamic environment, and presents
a rigorous and precise treatment of the sequential
pricing and costing problem that a carrier faces in a
dynamic environment. The sequential pricing prob-
lem presented here is an intrinsic feature of a sequen-
tial auction problem, which also typically includes
beyond pricing and costing, strategic game-theoretic
elements that are needed to represent a general auc-
tion process.

2. VRPCE Conceptual Description
and Mathematical Framework

The VRPCE is an extension of TSPP problems to
a dynamic environment where customer arrivals/
characteristics have some degree of uncertainty and
the service cost must be estimated before the carrier
decides to serve or compete for an arriving request.
There are five main characteristics of a VRPCE:
(a) the vehicle routing problem is dynamic, i.e., ser-
vice requests/contracts arrive over time; (b) there
is a degree of uncertainty about customer requests,
arrival times, and characteristics; (c) carriers must
dynamically estimate the incremental cost or price
of servicing a new request/contract; (d) each service
provided has a monetary reward that is uncertain at
the time of estimating the cost; and (e) the carrier’s
profit depends on the reward obtained and on how
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effectively the fleet is managed (service/travel costs
or resources spent to service customers).
The VRPCE is a variation of the VRP because ser-

vice costs are route and schedule dependent (a). The
type of VRP (capacitated, with time windows, etc.)
is not essential in the general formulation for the
VRPCE presented in this paper, although it is highly
relevant when the specific routing problems have to
be solved (§6). The problem is essentially dynamic
and stochastic (b), otherwise the problem is a ver-
sion of the already mentioned static TSPP. The accu-
racy needed to estimate service costs or prices (c)
depends on whether the reward (d) to be obtained
is known (acceptance/rejection problem) or unknown
(cost/pricing problem). Known-reward problems can
be easier to solve because establishing lower/upper
bounds can be computationally simpler. Regarding
rewards (e), the VRPCE is similar to the PTP, but
the rewards are unknown for requests that have not
been yet awarded (the rewards depend on competi-
tors’ prices as in second-price auctions).
Consider a carrier in a transportation marketplace

where the carrier has to prevail in price to acquire the
right to serve any given shipper. Shippers announce
contracts on an ongoing basis. Each contract may con-
sist of one or several shipments that the chosen carrier
will have to serve; only one price can be submitted as
a bid per contract.1

Let the contract arrival/announcement epochs be
�t1� t2� � � � � tN �, such that 0< t1 and ti < ti+1. We assume
that contracts are tendered and awarded in real time,
thus precluding carriers from pricing more than one
contract at the same time. Let tj represent the time
when contract sj arrives and the carrier tenders a
price bj ∈ R, where R is the set of real numbers.
After each contract offering, the carrier receives feed-
back yj regarding the outcome of the offering. The
public information known at the time of the offer-
ing for contract sj is hj = �h0�y1�y2� � � � � yj−1�, where
h0 denotes the information known by all carriers at
time t0 = 0 (with t0 < t1) before bidding for con-
tract s1. Similarly, the information known at a time t
with tj−1 < t ≤ tj is ht = �h0�y1�y2� � � � � yj−1). Again, the
information hj+1 = �h0�y1�y2� � � � � yj−1�yj ) is assumed
known at any time t with tj < t ≤ tj+1, and so on. The
amount and quality of feedback information received
will depend on the particulars of the market rules, as
discussed in §7.
Arrival times and contract characteristics are not

known in advance. They are assumed to come

1 The limitation is on one price for a contract as a whole, therefore
disallowing contract splitting or combinatorial pricing. If a carrier
cannot serve a contract as specified by the shipper—for example,
a hard time window or other constraint that cannot be met due to
previously won, but not yet served, contracts—the carrier does not
participate in the tender.

from a probability space ���� ���, with outcomes
��1��2� � � � ��N �. Any arriving contract sj represents a
realization at time tj from the aforementioned proba-
bility space, therefore, �j = �tj� sj �. Let �s1� s2� � � � � sN �
= S be the set of arriving contracts. The number N
of future demand realizations considered by the car-
rier is the length of a finite rolling horizon (RH). A
finite RH is adopted due to: (a) the intractability of
the infinite-horizon problem and (b) the unreliability
of demand and price forecasts associated with long
time horizons, as discussed in §7.2 The level of carrier
competition is represented by a random variable �,
whose successive realizations ��j �1≤j≤N represent the
best prices offered by the competition and/or the
reservation prices of the shippers, whichever is least,
during the N successive contract offerings. If a request
or contract cannot be served and is rejected (all bids
above the reservation price), the request is assumed
to be served by alternative means. The carrier gains
the right to serve contract sj if bj < �j ; if bj = �j , con-
tract sj is assumed to be awarded to the carrier with
some known probability.3

A central assumption of this VRPCE formulation is
that the carrier believes that the future level of con-
tract price competition is not influenced by his past,
present, or future actions (price or fleet management
related). The market-clearing setup is equivalent to
the clearing rules of a sequential second-price auction,
so if the carrier wins the right to serve contract sj ,
then this carrier is paid an amount �j . There are no
participation costs or penalties for losing an offering.
The fleet status at time t is denoted as zt , which

comprises two different sets: the set of vehicles with
their status updated to time t and the set of con-
tracts acquired, but not yet served, up to time t. The
fleet status at time tj when contract sj arrives will be
denoted as zj . Note that the set zj does not include
information on the just-arrived contract sj . Let Ij be
the indicator variable for shipment sj , such that Ij = 1
if the carrier has secured the offering for contract sj
and Ij = 0 otherwise. As contracts are tendered and
awarded in real time, the status of the fleet updated
with the tender result is denoted zj � Ij . To shorten
notation, a superscript “1” will indicate that the con-
tract was won; a superscript “0” indicates that the
contract was lost. Then, the updated states are z1j = zj �
�Ij = 1� and z0j = zj � �Ij = 0�, respectively. If a carrier is

2 The carrier’s optimal choice of N must balance the costs associated
with data collection, computation, and forecasting reliability. This
is a complex problem in itself, and beyond the scope of this paper.
Alternatively, N could be determined by a limit imposed on the
time horizon length, i.e., a carrier must return to the depot after a
predetermined number of working hours.
3 This probability will depend on market settings such as the num-
ber of competitors and the shipper’s policy regarding the assign-
ment of contracts when the reservation price is met.
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submitting a tender for contract sj at time tj , the sym-
bol “−” is used to represent the previous successful
tender as time tj− (the last tender won by the carrier
before time tj ). For the particular case of s1 or for a
carrier with no wins up to time tj , we use t0 as the
previous successful tender. The updated fleet status
immediately after winning the contract that arrived
at time tj− is denoted z1j−; in particular if tj− = t0 then
z1j− = z0.
It is assumed that the fleet status at a given time is

a function of time, previous fleet status, and history
up to the previous epoch; travel and service times are
assumed to be deterministic. This can be expressed by
assuming the existence of a state or assignment func-
tion,4 such that the status of the carrier when ship-
ment sj arrives is zj = a�tj� hj� zj−1�, or in general zt =
a�t�ht� zj � for any tj < t ≤ tj+1.
The distance or cost incurred by the fleet from

time tj up to time t using assignment function “a”
with initial status z1j is denoted d�a� z1j � t�. Let t

′
j be

the time at which the carrier completely serves all the
contracts in z1j . Because distance (or time) costs can-
not be negative, it follows that d�a� z1j � t� is a nonde-
creasing function. It also has constant values on the
following ranges:

—for t < tj�d�a� z1j � t�= 0,
—for t > t′j �d�a� z

1
j � t�= d�a� z1j � t

′
j �.

At time tj , the incremental cost of serving con-
tract sj up to time t ≥ tj is estimated using: c�sj� t�=
d�a� z1j � t� − �d�a� z1j−� t� − d�a� z1j−� tj ��. The VRPCE
consists of determining the price for each arriving
shipment sj ; this problem is analyzed in the next
section.

3. The VRPCE
The VRPCE can be formulated as a stochastic dyna-
mic programming problem where each stage is
defined by the arrival of a new contract, price is
the decision variable, and the state transitions are
determined by the contract award and fleet assign-
ment processes. In this section we assume that a fleet
deployment process can only be changed or inter-
rupted by winning a new contract. In particular, at
time tj , the full incremental cost of serving contract sj
is denoted as5

c�sj � = c�sj�t
′
j �=d�a�z1j �t′j �−�d�a�z1j−�t

′
j �−d�a�z1j−�tj ��

= d�a� z1j � t
′
j �−d�a� z0j � t′j ��

4 The assignment function is problem dependent; it can be any algo-
rithm that the carrier uses to solve the corresponding routing prob-
lem and to estimate future fleet status.
5 In general, earlier deployment schedules with fewer contracts fin-
ish earlier. It is assumed without loss of generality that t′j ≥ t′j− , the
completion time of t′j stochastically dominates t

′
j− , otherwise this

expression should be used with t′j replaced by t′j =max�t′j � t
′
j− �.

Because the VRPCE is a stochastic dynamic pro-
gramming problem, we could solve it using backward
induction. The carrier pricing the last contract sN at
time tN is in a situation strategically similar to a one-
item second-price auction because: (a) the carrier’s
reward depends on the realization of the price com-
petition for contract sj , which is �j ; (b) this reward �j
is independent of any action taken by the carrier;
and (c) the carrier wins the right to serve contract sj
if bj < �j . If bj = �j , the right to serve the contract
is obtained with a known probability dependent on
market settings, but independent of the value bj .
In a one-item second-price auction, the value of

the item (to a particular bidder) is a weakly domi-
nant strategy. This value (cost in a reverse auction) is
the bid that maximizes the bidder’s expected profit
(Vickrey 1961). Applying this logic to a reverse auc-
tion in the VRPCE setting, the cost of the contract is a
weakly dominant strategy. This cost is the price that
maximizes the carrier’s expected profit. Therefore, the
price for sN that maximizes the carrier’s expected
profit is b∗N = c�sN �. Note that at time tN the effect of
previous actions �b1� � � � � bN−1� is summarized in the
state variable z0N , i.e., the cost of previous actions in
the time interval �t1� � � � � tN � is already a “sunk” cost
and should not be considered again at time tN .
The carrier pricing the contract sN−1 is not in a

situation strategically similar to a one-item second-
price auction because the submitted price bN−1 has an
impact on the future status of the carrier at time tN ,
and therefore may affect the profit obtained for con-
tract sN . After submitting bN−1 there are only two pos-
sible outcomes: (1) the rights for contract sN−1 are
acquired; or (2) the rights are lost. If the former is
true, the carrier’s status at time tN will be zN � z1N−1 =
a�tN �hN �z1N−1�. If the latter is true, the carrier’s status
at time tN will be zN � z0N−1 = a�tN �hN �z0N−1�. Defining
�N �sN � zIN−1

N−1� as the expected profits from contract sN
conditional on the previous outcome as

�N �sN � z1N−1�=�N �sN � IN−1 = 1�

= E��N �
�E������− c�sN � � z1N−1�IN ��

IN = 1 if � > b∗N � IN−1 = 1 and

IN = 0 if � < b∗N � IN−1 = 1

or

�N �sN � z0N−1�=�N �sN � IN−1 = 0�

= E��N �
�E������− c�sN � � z0N−1�IN ��

IN = 1 if � > b∗N � IN−1 = 0 and

IN = 0 if � < b∗N � IN−1 = 0�

If contract sN−1 is acquired, the carrier’s fleet will
not necessarily travel a distance equivalent to the
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myopic incremental cost c�sN−1� because the possible
arrival and acquisition of contract sN may cut short
the fleet’s deployment plan, implemented at time
tN−1. The optimal price b∗N−1 that maximizes the car-
rier’s expected profits from time tN−1 onward is

b∗N−1∈argmaxE������−c�sN−1��IN−1+�N �sN �z1N−1�IN−1

+�N �sN � z0N−1��1− IN−1���

b ∈R� IN−1 = 1 if � > b and IN−1 = 0 if � < b�

Similarly, after submitting bN−2 there are only two
possible outcomes: (1) the rights for contract sN−2 are
acquired, or (2) the rights are lost. If the former is
true, the carrier’s status at time tN−1 will be zN−1 �
z1N−2. If the latter is true, the carrier’s status at time
tN−1 will be zN−1 � z0N−2. Defining �N−1�sN−1 � zIN−2

N−2� as
the expected profits from contract sN−1 onward condi-
tional on the previous outcome as

�N−1�sN−1 � z1N−2�

= E��N−1��E������− c�sN−1� � z1N−2�IN−1+�N �sN � z1N−1�IN−1

+�N �sN � z0N−1��1− IN−1���

IN−1 = 1 if � > b∗N−1 � IN−2 = 1 and

IN−1 = 0 if � < b∗N−1 � IN−2 = 1

and

�N−1�sN−1 � z0N−2�

= E��N−1��E������− c�sN−1� � z0N−2�IN−1+�N �sN � z1N−1�IN−1

+�N �sN � z1N−1��1− IN−1���

IN−1 = 1 if � > b∗N−1 � IN−2 = 0 and

IN−1 = 0 if � < b∗N−1 � IN−2 = 0�

Note (again) that at time tN−1 the effect of previ-
ous actions �b1� � � � � bN−2� is summarized in the state
variable z0N−1, i.e., the cost of previous actions in the
time interval �t1� � � � � tN−1� is already a sunk cost and
should not be considered again at time tN−1. The opti-
mal price b∗N−2 that maximizes the carrier’s expected
profits from time tN−2 onward is

b∗N−2 ∈ argmaxE������− c�sN−2��IN−2+�N−1�sN−1 � z1N−2�

·IN−2+�N−1�sN−1 � z0N−2��1− IN−2��

b ∈R� IN−2 = 1 if � > b and IN−2 = 0 if � < b�

Using induction, the optimal price b∗j that maximizes
the carrier’s expected profits from time tj onward is

b∗j ∈ argmaxE������− c�sj ��Ij +�j+1�sj+1 � z1j �Ij
+�j+1�sj+1 � z0j ��1− Ij �� (1)

b ∈R� Ij = 1 if � > b and Ij = 0 if � < b

where �j+1�sj+1 � zIjj � is defined as the expected prof-
its from contract sj+1 onward and conditional on the
previous outcome as

�j+1�sj+1 � z1j �
= E��j+1��E������− c�sj+1� � z1j �Ij+1+�j+2�sj+2 � z1j+1�Ij+1

+�j+2�sj+2 � z0j+1��1− Ij+1��� (2)

Ij+1 = 1 if � > b∗j+1 � Ij = 1 and

Ij+1 = 0 if � < b∗j+1 � Ij = 1

and

�j+1�sj+1 � z0j �
= E��j+1��E������− c�sj+1� � z0j �Ij+1+�j+2�sj+2 � z1j+1�Ij+1

+�j+2�sj+2 � z0j+1��1− Ij+1��� (3)

Ij+1 = 1 if � > b∗j+1 � Ij = 0 and

Ij+1 = 0 if � < b∗j+1 � Ij = 0�

3.1. Solving for the Optimal Price in the VRPCE
Neither Equation (2) nor Equation (3) is affected by
the bid value for shipment sj ; they are simply con-
ditioned on the outcome of the tender for sj . The
expected value of the present plus future profits for
any bid b ∈R can be expressed as

E������− c�sj ��Ij +�j+1�sj+1 � z1j �Ij +�j+1�sj+1 � z0j ��1− Ij ��

=
∫ �

b
��− c�sj ��p���d���+

∫ �

b
�j+1�sj+1 � z1j �p���d���

+
∫ b

−�
�j+1�sj+1 � z0j �p���d���� (4)

The first two integrals are evaluated in the interval
�b��� because they equal zero as long as price b is
greater than the competitors’ prices, or equivalently, if
the contract sj is lost. The last integral is evaluated in
the interval �−�� b� because it is zero only when the
bid b is smaller than the competitors’ bids, or equiva-
lently, if the contract sj is won.6 Grouping terms in (4):

∫ �

b
��− c�sj ��p���d���+

∫ �

b
�j+1�sj+1 � z1j �p���d���

+
∫ b

−�
�j+1�sj+1 � z0j �p���d���

=
∫ �

b
��− c�sj �+�j+1�sj+1 � z1j �−�j+1�sj+1 � z0j ��p���d���

+
∫ �

−�
�j+1�sj+1 � z0j �p���d���� (5)

6 Appendix 1 considers the case where p�b = �� is not negligible
(e.g., the price function is a probability mass function). The deriva-
tion is somewhat different, but the optimal price has the same
expression in both cases.
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The term

−c�sj �+�j+1�sj+1 � z1j �−�j+1�sj+1 � z0j �
does not depend on the realization of � or the value
of b. Denoting c∗j = c�sj �−�j+1�sj+1 � z1j �+�j+1�sj+1 � z0j �
and replacing in (4):

E������− c�sj ��+�j+1�sj+1 � z1j �+�j+1�sj+1 � z0j ��

=�j+1�sj+1 � z0j �+
∫ �

b
��− c∗j �p���d���� (6)

Equation (6) is strategically equivalent to a second-
price auction, where � represents the distribution
of the best competitors’ prices and c∗j is the car-
rier’s cost. The price that maximizes Equation (6) is
simply c∗j ; the proof that c

∗
j is optimal parallels the

proof for the one-item second-price auction. Assum-
ing b > c∗j , then

∫ �

b
��− c∗j �p���d��� ≤

∫ �

b
��− c∗j �p���d���

+
∫ b

c∗j
��− c∗j �p���d���

=
∫ �

c∗j
��− c∗j �p���d���

because all the elements in the last integral are equal
or larger than zero. Assuming b < c∗j , then

∫ �

c∗j
��− c∗j �p���d��� ≥

∫ �

c∗j
��− c∗j �p���d���

+
∫ c∗j

b
��− c∗j �p���d���

=
∫ �

b
��− c∗j �p���d���

because in the last integral the term �−c∗j is negative,
whereas the other multiplicands are equal to or larger
than zero. Therefore, Equation (6) is maximized when
b= c∗j , so the optimal bid for a shipment sj is

c∗j = c�sj �−�j+1�sj+1 � z1j �+�j+1�sj+1 � z0j �� (7)

In a one-item second-price auction, the optimal bid
is equivalent to the value of the item, at a price such
that the bidder is indifferent between accepting or
rejecting the item. Applying the same logic, a carrier’s
cost of serving a contract is equal to the price that
maximizes the carrier’s profit—in the assumed mar-
ketplace and given a carrier’s assignment function
and status—the value is provided by Equation (7).
Equations (2) and (3) show the recursive and expo-
nential nature of the problem. The assignment func-
tion zt = a�t�ht� zj−1� is the rule used to obtain a
carrier’s status when a new shipment arrives, or a

projection of a schedule into the future. The cost
provided by c�sj � is the incremental cost for incorpo-
rating sj into the carrier schedule. Equation (7) repre-
sents the value of the best price for a contract given
a carrier’s assignment technology “a.” Therefore, a
carrier with a different fleet assignment method may
have a different value for the optimal bid (even if
both carriers have the same fleet status). The intuition
behind (7) is straightforward. The first term repre-
sents the “incremental cost” of serving contract sj . The
other two terms are linked to the future and are best
interpreted together as the change in future profits
or opportunity costs brought about by serving con-
tract sj . This is illustrated in a simple example in the
next section.

4. VRPCE Example
This section illustrates how the concepts and formulas
derived in §3 apply to a simple yet instructive exam-
ple. Consider a single truck that serves a square
region ABCD. Only two types of contracts are pos-
sible: carrying a load from A to B (contract AB) or
from D to A (contract DA), as illustrated in Figure 1.
A contract arrives at each unit of time; there are no
uncertainties about the arrival times, only about the
contract characteristics, � = �AB�DA� and p�AB� =
p�DA�= 0�5. The distances are Manhattan (metric 1),
and there are no repositioning costs associated with
the final location of the truck. Each contract must
be fully served within three units of time following
its arrival (time window). The truck travels with a
unit speed; therefore, in a unit of time the truck cov-
ers a distance equivalent to a side of the square. There
is a probability mass function for the “competition
prices:” p�� = 1�= 1/4, p�� = 2�= 1/2, and p�� = 3�=
1/4. The carrier assignment function is such that the
truck travels the shortest path necessary to serve all
outstanding (not yet fully served) contracts. The exe-
cution of a shortest path (deployment plan) can only

A D

B

tN–2

sN–2

tN–1

sN–1

tN

sN

1 1 1 1

s1 s2 s3

t1 t2 t3

Lengths

|AB | = |BC | = |CD | = |DA | = 1

C

Figure 1 Example: Square Service Region, Two Types of Contracts,
and Constant Deterministic Contract Arrival Rate
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be interrupted or modified by the acquisition of future
contracts.
To illustrate the concepts and formulas, let us ini-

tially assume that the truck is located at vertex A at
time tN and has no outstanding (remaining) contracts
to serve. If contract AB arrives at time tN and the
carrier status is zN = �A�, the price is simply the full
incremental cost bN �sN =AB�= 1; for contract DA and
zN = �A� the price is simply bN �sN =DA�= 2.
Assume that the truck is located at vertex A at time

tN−1 and has no outstanding (remaining) contracts to
serve with corresponding zN−1 = �A�. If contract AB
arrives at time tN−1 and the carrier status is zN−1 = �A�,
the price is

bN−1�sN−1 =AB� = c�sN−1�−�N �sN � z1N−1�

+�N �sN � z0N−1��

The incremental cost in this case is

c�sN−1 =AB� = d�a� z1N−1� t
′
N−1�−d�a� z0N−1� t

′
N−1�

= 1− 0= 1�

The term �N �sN � z1N−1� is calculated, taking into ac-
count that z1N−1 = �A�AB� and the future status is
going to be zN = �B�, then c�sN =AB� � �zN = �B��= 2
and c�sN = DA� � �zN = �B�� = 3. For the case where
c�sN =AB� � �zN = �B��= 2= bN , the expected profit at
time tN is calculated as

E������− c�sN =AB� � �zN = �B���IN �

= E������− bN � �zN = �B���IN �= �3− 2�1/4= 1/4�

Only one term is needed, because the arrival of con-
tract sN will not produce any profits for price realiza-
tions � ≤ bN = 2= c�sN =AB� � �zN = �B��. For the case
where c�sN = DA� � �zN = �B�� = 3 = bN , the expected
profit at time tN is simply zero because all possi-
ble prices are less than or equal to three. The term
�N �sN � z1N−1� is then estimated as

�N �sN � z1N−1� = E��N �
�E������− c�sN � � z1N−1�IN ��

= �1/2��1/4�= 1/8�

The term �N �sN � z0N−1� is calculated, taking into
account that z0N−1 = �A� and the future status is going
to be zN = �A�; then c�sN =AB � zN = �A��= 1= bN and
c�sN =DA � zN = �A��= 2= bN . For the former cost the
expected profit is

E������− c�sN =AB � zN = �A���IN �

= �3− 1�1/4+ �2− 1�1/2= 1�

For the latter cost the expected profit is

E������− c�sN =DA � zN = �A���IN �= �3− 2�1/4= 1/4�

The term �N �sN � z0N−1� is estimated as

�N �sN � z1N−1� = E��N �
�E������− c�sN � � z0N−1�IN ��

= �1/2�1+ �1/2��1/4�= 5/8�

The optimal price for sN−1 = AB with zN−1 = �A� is
calculated as

bN−1�sN−1 =AB� = c�sN−1�−�N �sN �z1N−1�+�N �sN �z0N−1�

= 1− 1/8+ 5/8= 3/2�

Assume that the truck is located at vertex A at
time tN−1 with zN−1 = �A�. If contract DA has arrived
at time tN−1 and the carrier status is zN−1 = �A�, the
price is

bN−1�sN−1=DA�=c�sN−1�−�N �sN �z1N−1�+�N �sN �z0N−1��

The incremental cost in this case is obtained using

c�sN−1 =DA � zN−1 = �A��

= d�a� z1N−1� t
′
N−1�−d�a� z0N−1� t

′
N−1�= 2− 0= 2�

The term �N �sN � z1N−1� is calculated taking into
account that z1N−1 = �A$DA� and the future status is
going to be zN = �D$DA�. In the case where there is an
outstanding contract, the incremental cost of serving a
just-arrived contract sN up to time t ≥ tN is estimated
using

c�sN � t�= d�a� z1N � t
′
N �−d�a� z0N � t′N ��

but the second term is not zero. In particular, for
c�sN = AB � zN = �D$DA�� and c�sN = DA � zN =
�D$DA��, the incremental costs for the last arriving
contract are calculated as follows:

c�sN =AB � zN = �D�DA��

= d�a� z1N � t
′
N �−d�a� z0N � t′N �= 2− 1= 1

c�sN =DA � zN = �D�DA��

= d�a� z1N � t
′
N �−d�a� z0N � t′N �= 1− 1= 0�

In the last expression it is implicitly assumed that the
truck capacity is sufficient to carry two contract cargos
simultaneously. The future expected profits are

E������− c�sN =AB � zN = �D$DA���IN �

= �3− 1�1/4+ �2− 1�1/2= 1

E������− c�sN =DA � zN = �D$DA���IN �

= �3− 0�1/4+ �2− 0�1/2+ �1− 0��1/4�= 2�

The term �N �sN � z1N−1� is estimated as

�N �sN � z1N−1� = E��N �
�E������− c�sN � � z1N−1�IN ��

= �1/2�1+ �1/2�2= 3/2�
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The term �N �sN � z0N−1� is calculated taking into
account that z0N−1 = �A� and the future status is going
to be zN = �A�, then c�sN = AB � zN = �A�� = 1 and
c�sN = DA � zN = �A�� = 2. For the former cost the
expected profit is

E������− c�sN =AB��IN �= �3− 1�1/4+ �2− 1�1/2= 1�

For the latter cost the expected profit is

E������− c�sN =DA��IN �= �3− 2�1/4= 1/4�

The term �N �sN � z0N−1� is then estimated as

�N �sN � z1N−1� = E��N �
�E������− c�sN � � z0N−1�IN ��

= �1/2�1+ �1/2��1/4�= 5/8�

Then, the optimal price for sN−1 =AB with zN−1 = �A�
is calculated as

bN−1�sN−1 =AB� = c̄�sN−1�−�N �sN �z1N−1�+�N �sN �z0N−1�

= 2− 3/2+ 5/8= 9/8�

This simple example illustrates the importance of
properly estimating contract costs in a VRPCE envi-
ronment. Obviously, contract AB deploys the truck
in an unfavorable position, whereas contract DA
deploys the truck in a highly favorable position.
This is reflected in the prices starting from point A
and with no outstanding contracts: bN �sN = AB� = 1
and bN−1�sN−1 = AB� = 3/2 (price goes up); bN �sN =
DA�= 2 and bN−1�sN−1 =DA�= 9/8 (price goes down).
Not only is the price change sign different, but also the
magnitude of the change is such that there is an order
reversal if contracts are sorted (ascending or descend-
ing price order) at times tN−1 and tN .
This example also shows the importance of oppor-

tunity costs. There are two elements that could
increase the appeal of serving contract DA over con-
tract AB: (1) better deployment that reduces future
incremental costs, and (2) the fact that two contracts
can be served simultaneously. Note that in all cases
the location of the truck was assumed to be at the
same vertex A initially. Appendix 3 shows the appli-
cation of first-price auction payment rules to the same
example; the results are remarkably different as illus-
trated in the next section and Appendix 3.

5. Other Payment Mechanisms
Altering the payment rules can significantly simplify
or complicate the pricing problem. The former sit-
uation occurs if the reward for contract sj becomes
known at the time of arrival; the latter situation occurs
if the reward is a function of the submitted price.
These two situations are described next.

5.1. Acceptance/Rejection Problems
If the reward for contract sj becomes known at the
time of arrival, then the VRPCE problem becomes a
dynamic acceptance/rejection problem. Let us denote
�j as the reward for contract sj . Equation (1) can be
transformed into an acceptance/rejection threshold
because there are two possible outcomes: (a) a bid
over the reward �j that implies a rejection, and (b) a
bid below the reward �j that implies an acceptance.
It must be remembered that in a second-price auc-
tion, a carrier’s reward is the second-best bid if the
auction is won; the acceptance/rejection problem is
equivalent to having a carrier that knows all competi-
tors’ bids and therefore knows in advance the second-
lowest bid, which is �j . Then, Equation (1)

b∗j ∈ argmaxE������− c�sj ��Ij +�j+1�sj+1 � z1j �Ij
+�j+1�sj+1 � z0j ��1− Ij ��

b ∈R� Ij = 1 if � > b and Ij = 0 if � < b

can be transformed into Equation (8), the acceptance/
rejection case:

b∗j ∈ argmax���j − c�sj �+�j+1�sj+1 � z1j ��Ij �
�j+1�sj+1 � z0j ��1− Ij �� (8)

b ∈R� Ij = 1 if �j > b and Ij = 0 if �j < b�

If the bid submitted is �j > b, future profits are �j −
c�sj �+�j+1�sj+1 � z1j �; otherwise, if �j < b, future profits
are �j+1�sj+1 � z0j �. Combining these profits, the accep-
tance rule is

�j ≥ c�sj �+�j+1�sj � z0j �−�j+1�sj � z1j �� (9)

Note that if there is a penalty for rejecting a contract
denoted as pj , then the acceptance rule becomes

�j ≥ c�sj �+�j+1�sj+1 � z0j �−�j+1�sj+1 � z1j �− pj � (10)

A dynamic acceptance/rejection problem in less-
than-truckload (LTL) transportation is studied by
Kleywegt and Papastavrou (1998), whose work deals
with the distribution problem between LTL terminals
where customers request a batch of loads between dif-
ferent origins and destinations. The dispatcher must
dynamically accept or reject shipments and decide
on truck origin or destination movements, number
of trucks dispatched, and truck or loads assignments.
The model considers a reward for served shipments, a
constant penalty for rejected shipments, holding costs
for vehicles and loads at terminals, and transportation
costs between terminals. The problem is solved using
a continuous-time Markov decision process. Concep-
tually, Kleywegt and Papastavrou’s (1998) work is
the closest to an acceptance/rejection VRPCE because
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request characteristics and rewards come from a
known probability distribution and become known
at the time of the request’s arrival. However, the
underlying problem is not a VRP, but a dynamic
assignment-dispatching problem between a fixed set
of origin-destination pairs. Equation (10) is equivalent
to the optimal acceptance rule derived by Kleywegt
and Papastavrou (1998) for the dynamic dispatching
policies in an LTL problem.

5.2. First-Price Auction Payments
If the reward obtained for acquiring the right to serve
a contract is the price submitted itself (reward bj if
contract sj is won), the carrier pricing problem in the
last contract sN is no longer in a situation strategi-
cally similar to a one-item second-price auction. The
superscript “1” will be used to denote prices and
expectations that only apply to the first-price auction
payment format.
The bid that maximizes the bidder’s expected profit

for the last contract is

b1
∗
N ∈ argmaxE�����b− c�sN ��IN �

b ∈R� IN = 1 if � > b and IN−1 = 0 if � < b�

The bid that maximizes the bidder’s expected profit
for contract sN−1 is

b1
∗
N−1 ∈ argmaxE�����b− c�sN−1��IN−1+�N �sN � z1N−1�IN−1

+�N �sN � z0N−1��1− IN−1��

b ∈R� IN−1 = 1 if � > b and IN−1 = 0 if � < b�

The bid that maximizes the bidder’s expected profit
for contract sj is

b1
∗
N−1 ∈ argmaxE�����b− c�sj ��Ij +�N �sj+1 � z1j �IN−1

+�N �sj+1 � z0j ��1− Ij �� (11)

b ∈R� Ij = 1 if � > b and Ij = 0 if � < b�

The future expected profits are calculated as follows:

�1
j+1�sj+1 � zIj �
=E��j+1��E�����b

∗
j+1−c�sj+1� �zIj �Ij+1+�1

j+2�sj+2 �z1j+1�Ij+1
+�1

j+2�sj+2 � z0j+1��1− Ij+1���� (12)

Note that in general �1
j+1�sj+1 � zIj � 
= �j+1�sj+1 � zIj �. In

auction terminology, this type of payment or reward
corresponds to a first-price auction.
In general, the price that maximizes expected prof-

its is (derivation in Appendix 2):

b1
∗
j ∈ argmax

[∫ �

b
�b− c1∗�sj ��p���d���

]
b ∈R� (13)

where c1∗�sj �= c�sj �+�1
j+1�sj+1 � z1j �−�1

j+1�sj+1 � z0j �.

Because the reward is no longer independent from
the price submitted by the carrier, expression (13)
is more involved than previously obtained expres-
sion (7). Furthermore, expression (13) indicates than
the price submitted by the carrier is not necessarily
the cost of servicing the arriving shipment (c1∗�sj ��.
This type of pricing conceals the importance of repo-
sitioning costs and truck location/status as shown in
Appendix 3; first-price auction payments may lead to
ex ante inefficient outcomes. The same phenomenon
was observed by Figliozzi, Mahmassani, and Jaillet
(2005) when simulating first and second-price auc-
tion marketplaces. After employing first-price auction
rules in the example previously studied in §4, the
prices submitted for contract AB are: bN �sN = AB� =
bN−1�sN−1 = AB�. This example clearly shows that
prices with first-price auction payments do not nec-
essarily reflect the cost of generating the transport
service. For all of the abovementioned reasons, a
second-price auction mechanism is employed to allo-
cate contracts in a VRPCE.

6. VRPCE Implementation
The numerical implementation of a VRPCE strategy
may be a difficult task for large fleets or a large num-
ber of contracts. Even assuming for the time being
that Sj+1�����N = �sj+1� � � � � sN � is known at time tj , each
of the remaining N − j contracts can be won or lost,
generating a decision tree that has 2N−j end nodes
and corresponding possible future trajectories. Fur-
thermore, one needs to consider solving an NP-hard
problem (underlying VRPs) every time c�sk� has to be
estimated.
A further source of difficulty is that the prof-

itability of each path history up to a given time is
dependent on the value of future costs (which are
unknown when going forward). Conversely, the value
of future costs are known when moving backward,
however, one does not know the carrier’s status at the
time (a carrier’s status is dependent on the previous
path history). It is important to note that future fleet
deployment depends on the present price tendered
and its probability of winning. At the same time, the
present price depends on the future profits and future
fleet status.
The exact or computational estimation of Equa-

tion (7) may be quite involved or even intractable for
small problems. In this section, we propose and evalu-
ate a computationally straightforward approximation
of Equation (7). This approach is denoted herein one-
step-look-ahead (1SLA) because it limits the evalua-
tion of the future profits to just one step or period
into the future:

�j+1�sj+1 � z1j �≈ E��j+1��E������− c�sj+1� � z1j �Ij+1��
�j+1�sj+1 � z0j �≈ E��j+1��E������− c�sj+1� � z0j �Ij+1���



Figliozzi, Mahmassani, and Jaillet: Pricing in Dynamic Vehicle Routing Problems
312 Transportation Science 41(3), pp. 302–318, © 2007 INFORMS

To estimate these two terms, it is assumed that the
1SLA carrier knows the true distribution of load
arrivals over time and their spatial distribution�, and
also has an estimation of the endogenously generated
prices or payments �; 30 draws from � and � are
used to estimate these two terms. In this paper the
1SLA carrier approximates the price function as a nor-
mal function, whose mean and standard deviation are
obtained from the whole sample of previous prices.
The 1SLA approach uses this expression to estimate
the price:

b�sj � = c�sj �−E��j+1��E������− c�sj+1� � z1j �Ij+1��
+E��j+1��E������− c�sj+1� � z0j �Ij+1���

The 1SLA carrier is compared against a static
approach that does not take into account the stochas-
tic nature of the problem. This is a natural benchmark
because it represents a myopic carrier. This is herein
denoted as the “static” approach, where the price sub-
mitted for a given shipment sj is simply c�sj �. Simu-
lations are used to simultaneously compare how the
1SLA and static approximations perform under dif-
ferent market settings (in our case limited to arrival
rates and time windows). Market and simulation set-
tings used to quantify and compare the performance
of the two approaches are described next.

6.1. Market and Simulation Settings
The simulated market only enables the sale of truck-
load cargo capacity based mainly on price, yet still
satisfies customer level of service demands (in this
case, hard time windows or TW). The mixed-integer
program formulation used to estimate c�sj � is based
on the formulation proposed by Yang, Jaillet, and
Mahmassani (2004). Shipments and vehicles are fully
compatible in all cases; there are no special ship-
ments or commodity-specific equipment. Three differ-
ent TW length/shipment service duration ratios are
simulated. These ratios are denoted short, medium,
and long, a reference to the average time window
length. The different time window lengths (TWL) for
a shipment sj , where ld�sj � denotes the function that
returns the distance between a shipment origin and
destination, are
• TWL�sj � = 1�ld�sj � + 0�25� + uniform�0�0�1�0�

(short)
• TWL�sj � = 2�ld�sj � + 0�25� + uniform�0�0�2�0�

(medium)
• TWL�sj � = 3�ld�sj � + 0�25� + uniform�0�0�3�0�

(long).
The shipments to be auctioned are circumscribed in

a bounded geographical region. The simulated region
is a 1 by 1 square area. Trucks travel from ship-
ment origins to destinations at a constant unit speed
(one unit distance per unit time). Shipment origins

and destinations are uniformly distributed over the
region. There is no explicit underlying network struc-
ture in the chosen origin-destination demand pattern.
Alternatively, it can be seen as a network with an infi-
nite number of origins and destinations (essentially
each point in the set �0�1�× �0�1�� that has an infinite
number of corresponding links. Each and every link
possesses an equal infinitesimal probability of occur-
rence. Vehicles are assumed to travel at a constant
speed in a Euclidean two-dimensional space. Vehi-
cles speeds are a unit; the average shipment length is
�0.52. Carriers’ sole sources of revenue are the pay-
ments received when a shipment is acquired. Ship-
pers’ reservation prices are set as 1.41 units (diagonal
of the square area) plus the loaded distance of the
shipment. Carriers’ costs are proportional to the total
distance traveled by the fleet. It is assumed that all
carriers have the same unit cost per mile.
The market is comprised of shippers that indepen-

dently call for shipment procurement auctions, and
two carriers. Each carrier operates two trucks. Dif-
ferent demand-supply ratios are studied. Arrivals in
all cases follow Poisson processes, with arrival rates
ranging from low to high. At a low arrival rate, all
the shipments can be served (if some shipments are
not serviced, it is due to a very short time window).
At a high arrival rate carriers operate at capacity and
many shipments have to be rejected. The expected
interarrival time is normalized with respect to the
market fleet size. The expected interarrival times are
1/2 arrivals per unit time per truck, 2/2 arrivals per
unit time per truck, and 3/2 arrivals per unit time per
truck (low, medium, and high arrival rates, respec-
tively). The results obtained reflect the steady-state
operation (1,000 arrivals and 10 iterations) of the sim-
ulated system.
Allocations follow the rules of a second-price

reverse auction. It is important to highlight that car-
riers are competing for each shipment or contract.
Carriers are simultaneously interacting in the same
market, which better resembles the operation of a
dynamic competitive market rather than the evalua-
tion of each strategy separately (with no interaction)
followed by a comparison of the separately obtained
results. Simulation results that assess the quality of the
1SLA approximation in relation to the static approxi-
mation are presented next.

6.2. Analysis of Results
Tables 1 to 3 compare the results for the 1SLA carrier
versus the static carrier. Table 1 illustrates that the
1SLA carrier outperforms its competitor profitwise, or
obtains a higher market share when profit differences
are not statistically significant.
Table 2 presents the average fleet utilization per

carrier (fleet utilization reflects, on average, what per-
centage of the time trucks are not idle), which as
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Table 1 Profit and Number of Shipments Served Comparison

Arrival Carrier Average St. dev. Diff. Average St. dev. Diff.
rate TW type profit profit profit (%) served served served (%)

Low Short 1SLA 103�44 1.81 4�0 210.50 1.52 −0�9
Static 99�49 3.11 212.50 2.22

Med. 1SLA 63�85 1.62 37�0 288.30 3.64 36�7
Static 46�59 1.43 210.90 3.63

Long 1SLA 63�44 1.96 79�8 306.70 4.28 58�7
Static 35�29 0.99 193.30 4.28

Med. Short 1SLA 242�59 3.19 12�5 366.80 3.92 −7�0
Static 215�60 3.52 394.40 2.55

Med. 1SLA 162�57 3.84 −0�5 515.60 2.37 12�2
Static 163�32 3.35 459.60 2.57

Long 1SLA 144�32 3.09 19�8 576.20 4.35 36�9
Static 120�49 2.53 420.80 4.79

High Short 1SLA 387�59 4.63 16�9 475.50 5.27 −7�4
Static 331�58 3.99 513.30 2.52

Med. 1SLA 337�55 5.56 10�1 605.40 5.12 1�1
Static 306�70 3.00 598.80 4.47

Long 1SLA 315�04 6.07 0�1 651.30 7.40 2�5
Static 314�80 4.09 635.40 5.74

expected increases when the number of shipments
served (Table 1) or arrival rate increases. The average
loaded distance per carrier shows a distinct pattern;
the 1SLA carrier tends to serve shorter shipments
when there is a short time window. This is an intu-
itive result, because shorter shipments tend to utilize
fewer resources. The difference in profits and number
of shipments handled decreases percentagewise when
the arrival rate is high and the time windows are not
short. This can be explained by the fact that the 1SLA
carrier is operating at capacity. When supply is tight
all carriers tend to do well.

Table 2 Fleet Utilization and Average Loaded Distance per Shipment Served Comparison

Arrival Carrier Fleet St. dev. Diff. Average St. dev. Diff. loaded
rate TW type utilizat. (%) fleet utilizat. utilizat. (%) loaded dist. loaded dist. dist. (%)

Low Short 1SLA 32.60 0.0013 −4�0 0.5083 0.0045 −4�9
Static 33.97 0.0027 0.5343 0.0079

Med. 1SLA 47.07 0.0040 42�7 0.5265 0.0049 0�7
Static 32.98 0.0025 0.5230 0.0078

Long 1SLA 48.85 0.0034 63�9 0.5261 0.0050 0�8
Static 29.80 0.0031 0.5219 0.0056

Med. Short 1SLA 57.68 0.0019 −7�1 0.5089 0.0073 −3�3
Static 62.06 0.0035 0.5263 0.0050

Med. 1SLA 80.71 0.0036 12�8 0.5237 0.0077 −0�7
Static 71.58 0.0042 0.5274 0.0041

Long 1SLA 86.99 0.0049 41�2 0.5246 0.0068 0�0
Static 61.62 0.0057 0.5244 0.0063

High Short 1SLA 74.38 0.0026 −8�1 0.5087 0.0097 −4�5
Static 80.96 0.0029 0.5326 0.0060

Med. 1SLA 95.43 0.0009 1�7 0.5250 0.0050 −0�7
Static 93.83 0.0024 0.5285 0.0066

Long 1SLA 97.21 0.0013 4�9 0.5269 0.0064 0�5
Static 92.64 0.0031 0.5244 0.0048

Table 3 shows how the 1SLA carrier modifies the
static service cost per arriving shipment. The static
insertion cost is equal to c�sj � minus shipment sj
loaded distance (loaded distance associated costs are
equal for all carriers). With shorter time windows
prices are increased to reflect that it is harder to serve
additional shipments when time windows are tight;
the static approach tends to undervalue the “true” cost
of serving shipments when time windows are short.
For larger time windows (low and medium arrival
rates) prices are decreased; the static approach tends
to overvalue the true cost of serving shipments when
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Table 3 Average Insertion Costs and Future Profits Comparison

Average Average �2�− �1�
Carrier Average static �j+1�sj+1 � z1

j � �j+1�sj+1 � z0
j � Diff. insertion

Arrival rate TW type insertion cost (1) (2) �2�− �1� cost (%)

Low Short 1SLA 0.369 0.338 0.355 0�017 4�74
Med. 1SLA 0.405 0.181 0.143 −0�038 −9�39
Long 1SLA 0.386 0.194 0.144 −0�050 −12�83

Med. Short 1SLA 0.378 0.375 0.451 0�076 20�15
Med. 1SLA 0.397 0.219 0.197 −0�022 −5�52
Long 1SLA 0.353 0.188 0.161 −0�027 −7�78

High Short 1SLA 0.369 0.376 0.515 0�139 37�62
Med. 1SLA 0.391 0.332 0.353 0�021 5�32
Long 1SLA 0.348 0.260 0.271 0�011 3�28

time windows are short. However, if the fleet utiliza-
tion is too high (over 90% as shown in Table 2), the
static approach tends to undervalue the true cost of
serving shipments even when time windows are long.
There are two distinct forces operating on the mar-

ket prices: time window lengths and arrival rates.
The 1SLA strategy manages to outperform the static
pricing approach either profitwise or with higher
market shares when profits are not significantly dif-
ferent. In addition, the 1SLA strategy seems able to
price discriminately by shipment characteristics (e.g.,
by the shipment loaded distance). As expected, tak-
ing the future into account outperforms the myopic
approach. The same type of results has been found in
the work of Powell, Towns, and Marar (2000); how-
ever, it is important to notice that our work deals with
pricing decisions, whereas Powell’s deals with rout-
ing or assignment decisions.

7. Informational and Behavioral
Assumptions in the VRPCE
Problem

The formulation presented in §3 is general enough to
readily accommodate variants to the VRPCE, whereas
the solution procedures of §§ three and four still
apply. In a real-life application, the arrival rates of
contracts (�) and price distributions (�) need to be
estimated. In such cases, when carriers must work
with the estimated distributions, (�� = f �y0�y1� � � � �
yj−1�� and ( �� = g�y0�y1� � � � � yj−1��, the amount of
information revealed can have a high impact on
the quality of the estimated distributions. Following
the classification used by Figliozzi, Mahmassani, and
Jaillet (2003b), the two extremes of the information
spectrum can be denoted as: (a) a maximum infor-
mation environment (MaIE) where all arrivals and
prices are revealed or (b) a minimum information
environment (MiIE) where acceptance or rejection is
the only information provided. These two extreme
scenarios approximate two realistic situations. Max-
imum information would correspond to a totally

transparent Internet auction where all arrival/auction
information is accessed by participants. Minimum
information would correspond to a shipper selec-
tively telephoning carriers for a quote, with the ship-
per only calling back the carrier that was selected.
Some key assumptions are made in the VRPCE in

order to keep the problem not only relevant from
the economic and routing point of view, but also
tractable and conceptually well defined. The assumed
price clearance rules (similar to second-price auc-
tions) and independence (the independence assump-
tion herein) between carrier actions and prices (or
contract arrivals) assures that a rational carrier (with
adequate computational capabilities) will only price
his services at the incremental cost provided by Equa-
tion (7). This fact is relevant because it takes away
any strategic element from the VRPCE and focuses
the attention on efficient routing and costing. Com-
putational results have also shown that the second
price with information about market-clearing prices
generates more wealth than first-price auction clear-
ing rules or second-price auctions with minimum
information (MiIE) (Figliozzi, Mahmassani, and Jaillet
2005).
However, the “independence assumption” is a

strong assumption, especially in the full-information
case (MaIE). With full-information numerous data can
be collected by the carriers and there may exist an
incentive to use the revealed data to model how
competitors price contracts. If this takes place, a
carrier may model competitors’ behavior and add
causal links between a carrier’s actions and future
prices (Figliozzi 2004). The independence assumption
is more suitable when there is a large number of
competitors, no participation fees or rejection penal-
ties, information about market-clearing prices, and
unconstrained capacity as the game-theoretical auc-
tion and industrial organization literature indicates
(Krishna 2002, Tirole 1989). Therefore, the indepen-
dence assumption is more suitable in a truly compet-
itive environment, hence the “CE” in VRPCE.
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8. Conclusion
This paper presents the VRPCE, illustrated as a
dynamic extension of the traveling-salesmen problem
with profits. In the VRPCE a carrier that attempts
to act rationally must estimate the incremental cost
of servicing the new service requests as they arrive
dynamically. An intuitive optimal price expression for
the VRPCE problem reveals that full incremental costs
include: (a) the expected change due to altering the
current fleet assignment scheme, and (b) the oppor-
tunity costs on future profits created by serving a
new contract. A simple example showed that carriers’
prices under first-price auction payment rules do not
necessarily reflect the cost of servicing transportation
requests.
The proposed VRPCE problem provides an ade-

quate framework with which to evaluate the impact
of new service arrivals or changes in the fleet/
shipments status in a competitive environment. Com-
petition may involve either (a) two or more compet-
ing (opposing) options such as accept or reject, use
private fleet or use common carrier, charge price A or
charge price B, etc. or (b) a price competition with a
rival company. Pricing is explicitly incorporated into
the formulation; this is achieved by relaxing a sequen-
tial auctions mechanism to model a competitive envi-
ronment that makes explicit the carriers’ behavioral
assumptions in the VRPCE problem. A simulation-
based approach to evaluate service costs was pro-
posed and evaluated; the proposed approach not only
outperforms a static pricing, but it also intuitively
price discriminates by market arrival rate, time win-
dows, and shipment characteristics.
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Appendix 1
If the value p�b = �� is not negligible, and for a given con-
stant k, such that 0≤ k≤ 1, let kp�b= �� represent the proba-
bility of acquiring the contract when there is a price tie. For
a ) > 0 arbitrarily small, the expected value of the present
plus future profits for any bid b ∈R can be expressed as

E������− c�sj ��Ij +�j+1�sj+1 � z1j �Ij +�j+1�sj+1 � z0j ��1− Ij ��

=
∫ �

b+)
��− c�sj ��p���d���+

∫ �

b+)
�j+1�sj+1 � z1j �p���d���

+
∫ b−)

−�
�j+1�sj+1 � z0j �p���d���+ kp�� = b� ∗ �b− c�sj ��

+ kp�� = b� ∗ ��j+1�sj+1 � z1j �+�j+1�sj+1 � z0j ��� (A1)

The first two integrals are evaluated in the interval
�b+ )��� because they equal zero as long as price b is
greater than the competitors’ prices �b > ��, or equivalently,
if the contract sj is won. The last integral is evaluated in
the interval �−�� b−)� because it is not zero only when the
bid b is bigger than the competitors’ bids �b > ��, or equiv-
alently, if the contract sj is lost. Grouping terms in (A1):

∫ �

b+)
��− c�sj �+�j+1�sj+1 � z1j �−�j+1�sj+1 � z0j ��p���d���

+ kp�� = b� ∗ �b− c�sj ��+
∫ �

−�
�j+1�sj+1 � z0j �p���d���

+ kp�� = b� ∗ ��j+1�sj+1 � z1j ��− kp�� = b� ∗ ��j+1�sj+1 � z0j ���
Regrouping once more:
∫ �

b+)
��− c�sj �+�j+1�sj+1 � z1j �−�j+1�sj+1 � z0j ��p���d���

+ kp�� = b� ∗ ��− c�sj �+�j+1�sj+1 � z1j �−�j+1�sj+1 � z0j ��
+�j+1�sj+1 � z0j �� (A2)

Again, the term −c�sj �+�j+1�sj+1 � z1j �−�j+1�sj+1 � z0j � does
not depend on the realization of � or the value of b. Denot-
ing c∗j = c�sj �− �j+1�sj+1 � z1j �+ �j+1�sj+1 � z0j � and replacing
in (A2):

∫ �

b+)
��− c∗j �sj ��p���d���

+ kp�� = b� ∗ ��− c∗j �sj ��+�j+1�sj+1 � z0j �� (A3)

Equation (A3) is strategically equivalent to a second-price
auction, where � represents the distribution of the best com-
petitors’ prices and c∗j is the carrier’s cost. The price that
maximizes Equation (A3) is simply c∗j ; the proof that c

∗
j is

optimal parallels the proof for the one-item second-price
auction. The term �j+1�sj+1 � z0j � is constant and may be
taken out without altering the comparisons.
Assuming b > c∗j , then

∫ �

b+)
��− c∗j �p���d���+ kp�� = b� ∗ ��− c∗j �sj ��

≤
∫ �

b+)
��− c∗j �p���d���+ p�� = b���− c∗j �sj ��

+
∫ b−)

c∗j
��− c∗j �p���d���

because all the elements in the last integral are equal to or
larger than zero, and p�� = b�≥ kp�� = b� is also larger than
zero.
Assuming b < c∗j , then

∫ �

c∗j
��− c∗j �p���d���

≥
∫ �

c∗j
��− c∗j �p���d���+

∫ c∗j

b+)
��− c∗j �p���d���

+ kp�� = b� ∗ ��− c∗j �sj ���

because in the last integral the term � − c∗j is negative and
in the last term kp�� = b�∗ �b− c∗j �sj �� is negative. Therefore,
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Equation (A3) is maximized when b = c∗j . Therefore, the
optimal bid for a shipment sj is equal to (7): c∗j = c̄�sj � −
�j+1�sj � z1j �+�j+1�sj � z0j �.
Appendix 2
For the first-price auction payment, the optimal price must
maximize expected profits. The expected value of the
present plus future profits for any bid b ∈ R can be ex-
pressed as

E�����b− c�sj ��Ij +�1
j+1�sj+1 � z1j �Ij +�1

j+1�sj+1 � z0j ��1− Ij ��

=
∫ �

b
�b− c�sj ��p���d���+

∫ �

b
�1
j+1�sj+1 � z1j �p���d���

+
∫ b

−�
�1
j+1�sj+1 � z0j �p���d����

The first two integrals are evaluated in the interval �b���
because they equal zero as long as price b is greater than the
competitors’ prices �b > ��, or equivalently, if the contract sj
is won. The last integral is evaluated in the interval �−�� b�
because it is not zero only when the bid b is bigger than the
competitors’ bids �b > ��, or equivalently, if the contract sj
is lost. Grouping terms:
∫ �

b
�b− c�sj �+�1

j+1�sj+1 � z1j �−�1
j+1�sj+1 � z0j ��p���d���

+
∫ �

−�
�1
j+1�sj+1 � z0j �p���d���

=
∫ �

b
�b− c�sj �+�1

j+1�sj+1 � z1j �−�1
j+1�sj+1 � z0j ��p���d���

+�1
j+1�sj+1 � z0j ��

The last term is a constant. Replacing c1
∗
�sj � = c�sj � +

�1
j+1�sj+1 � z1j �−�1

j+1�sj+1 � z0j �, the optimal bid maximizes:

b1
∗
j ∈ argmax

[∫ �

b
�b− c1

∗
�sj ��p���d���

]
b ∈R�

There is no general expression for the optimal bid that is
“distribution free” and equivalent to expression (7). For
each particular distribution of prices there will be a cor-
responding optimal price function. For example, if prices
are uniformly distributed in the interval �0�u�, the optimal
price is

b1∗j = u+ c1∗�sj �
2

for 0≤ c1∗�sj �≤ u$

in particular, b1∗j = u/2 for c1∗�sj � = 0 and b1∗j > u for
c1∗�sj � > u.

Appendix 3
This appendix applies first-price auction payment mecha-
nisms to the example presented in §5. To illustrate the con-
cepts and formulas, let us initially assume that the truck is
originally located at vertex A. If contract AB has arrived at
time tN and the carrier status is zN = �A� (truck is empty
and idle).
Best responses are calculated using

b1
∗
j ∈ argmax

[∫ �

b
�b− c1∗�sj ��p���d���

]
b ∈R�

When the last shipment arrives, for each cost there is a price
that maximizes expected profits:

cN = 3
�1∗�cN = 3� bN = 3�= 0�

cN = 2

�1∗�cN = 2� bN = 3− )�= �3− )− 2� ∗ �1/4�≈ 1/4

�1∗�cN = 2� bN = 2− )�= �2− )− 2� ∗ �1/4�
+ �2− )− 2� ∗ �1/2�≈ 0�

cN = 1

�1∗�cN = 1� bN = 3− )�= �3− )− 1� ∗ �1/4�≈ 1/2

�1∗�cN = 1� bN = 2− )�= �2− )− 1� ∗ �1/4�
+ �2− )− 1� ∗ �1/2�≈ 3/4�

cN = 0

�1∗�cN = 0� bN = 3− )�= �3− )− 0� ∗ �1/4�≈ 3/4

�1∗�cN = 0� bN = 2− )�= �2− )− 0� ∗ �1/4�
+ �2− )− 0� ∗ �1/2�≈ 3/2

�1∗�cN =0�bN =1−)�= �1−)−0�∗�1/4�+�1−)−0�∗�1/2�
+ �1− )− 0� ∗ �1/4�≈ 1�

Then the prices for the last shipment are simply the best
responses:

bN �sN =AB�c�sN �= 1�= 2− )

bN �sN =DA�c�sN �= 2�= 3− )�

Let us now assume that the truck is located at vertex A and
idle at time tN−1, with corresponding zN−1 = �A�. If contract
AB has arrived at time tN−1 and the carrier status is zN−1 =
�A� (truck is empty and idle), the incremental cost in this
case is

c�sN−1=AB� = d�a�z1N−1�t
′
N−1�−d�a�z0N−1�t

′
N−1�=1−0=1�

The term �1
N �sN � z1N−1� is calculated by taking into account

that z1N−1 = �A$AB� and that the future status is going to be
zN = �B�; then c�sN = AB� = 2 and c�sN = DA� = 3. For the
former cost the expected profit is

E�����b
1∗
N − c�sN =AB��IN �= 1/4�

For the latter cost the expected profit is

E�����b
1∗
N − c�sN =DA��IN �= 0�

The term �1
N �sN � z1N−1� is then estimated as

�1
N �sN � z1N−1� = E��N ��E�����b

1∗
N − c�sN � � z1N−1�IN ��

= �1/2��1/4�+ �1/2�0= 1/8�

The term �1
N �sN � z0N−1� is calculated by taking into account

that z0N−1 = �A� and the future status is going to be zN = �A�;
then, c�sN =AB�= 1 and c�sN =DA�= 2. For the former cost
the expected profit is

E�����b
1∗
N − c�sN =AB��IN �= 3/4�
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For the latter cost the expected profit is

E�����b
1∗
N − c�sN =DA��IN �= 1/4�

The term �1
N �sN � z0N−1� is then estimated as

�1
N �sN � z1N−1� = E��N ��E�����b

1∗
N − c�sN � � z0N−1�IN ��

= �1/2��3/4�+ �1/2��1/4�= 1/2�

Then, the cost c1∗�sN−1� is

c1∗�sN−1 =AB�= 1− 1/8+ 1/2= 11/8�

The best response to this cost is a price:

bN−1�sN−1 =AB�= 2− )�

Let us now assume that the truck is located at vertex A
and is idle at time tN−1 with corresponding zN−1 = �A�. If
contract DA has arrived at time tN−1, the carrier status is
zN−1 = �A� (truck is empty and idle) and the incremental
cost is in this case is

c�sN−1 =DA� = d�a� z1N−1� t
′
N−1�−d�a� z0N−1� t

′
N−1�

= 2− 0= 2�

The term �1
N �sN � z1N−1� is calculated by taking into account

that z1N−1 = �A$DA� and the future status is going to be
zN = �D�DA�; then, c�sN =AB�= 1 and c�sN =DA�= 0. For
the former cost the expected profit is

E�����b
1∗
N − c�sN =AB��IN �= 3/4�

For the latter cost the expected profit is

E�����b
1∗
N − c�sN =DA��IN �= 3/2�

The term �1
N �sN � z1N−1� is then estimated as

�1
N �sN � z1N−1� = E��N ��E�����b

1∗
N − c�sN � � z1N−1�IN ��

= �1/2��3/4�+ �1/2��3/2�= 9/8�

The term �1
N �sN � z0N−1� is calculated by taking into account

that z0N−1 = �A� and the future status is going to be zN = �A�;
then, c�sN =AB�= 1 and c�sN =DA�= 2. For the former cost
the expected profit is

E�����b
1∗
N − c�sN =AB��IN �= 3/4�

For the latter cost the expected profit is

E�����b
1∗
N − c�sN =DA��IN �= 1/4�

The term �N �sN � z0N−1� is then estimated as

�1
N �sN � z1N−1� = E��N ��E�����b

1∗
N − c�sN � � z0N−1�IN ��

= �1/2��3/4�+ �1/2��1/4�= 1/2�

Then, the cost c1∗�sN−1� is

c1∗�sN−1 =DA�= 2− 9/8+ 1/2= 11/8�

The best response to this cost is a price

bN−1�sN−1 =DA�= 2− )�

The profits are

�2− 11/8� ∗ �1/4�+ �2− 11/8� ∗ �1/2�= 5/32+ 10/32= 15/32�

With a price of 3− ), profits are smaller

�3− 11/8� ∗ �1/4�= 13/32�

This simple example illustrates the importance of the
given or assumed price distribution when payments are
similar to first-price auction payments. This is reflected in
the prices starting from point A and with no outstand-
ing contracts: bN �sN = AB� = 2 − ) and bN−1�sN−1 = AB� =
2 − ) (price remains constant); bN �sN = DA� = 3 − ) and
bN−1�sN−1 =DA�= 2−) (price goes down). In addition, first-
price auction payment mechanisms may lead to inefficient
ex ante allocations because the carrier prices the contracts
above the marginal cost, i.e., the lowest expected cost carrier
does not serve the contract even though it would be ex ante
optimal to do so. The same phenomenon was observed by
Figliozzi, Mahmassani, and Jaillet (2005) when simulating
first and second-price sequential auction marketplaces.
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